2,317 research outputs found

    Consequences of large impacts on Enceladus' core shape

    Get PDF
    International audienceThe intense activity on Enceladus suggests a differentiated interior consisting of a rocky core, an internal ocean and an icy mantle. However, topography and gravity data suggests large heterogeneity in the interior, possibly including significant core topography. In the present study, we investigated the consequences of collisions with large impactors on the core shape. We performed impact simulations using the code iSALE2D considering large differentiated impactors with radius ranging between 25 and 100 km and impact velocities ranging between 0.24 and 2.4 km/s. Our simulations showed that the main controlling parameters for the post-impact shape of Enceladus’ rock core are the impactor radius and velocity and to a lesser extent the presence of an internal water ocean and the porosity and strength of the rock core. For low energy impacts, the impactors do not pass completely through the icy mantle. Subsequent sinking and spreading of the impactor rock core lead to a positive core topographic anomaly. For moderately energetic impacts, the impactors completely penetrate through the icy mantle, inducing a negative core topography surrounded by a positive anomaly of smaller amplitude. The depth and lateral extent of the excavated area is mostly determined by the impactor radius and velocity. For highly energetic impacts, the rocky core is strongly deformed, and the full body is likely to be disrupted. Explaining the long-wavelength irregular shape of Enceladus’ core by impacts would imply multiple low velocity (<2.4 km/s) collisions with deca-kilometric differentiated impactors, which is possible only after the LHB period

    Enhanced visualisation of complex thermofluid data: Vertical and horizontal combined convection and microscale heat transfer cases

    Get PDF
    Copyright @ 2000 UITIn general, convective heat transfer is an 'n-dimensional' problem where n is well in excess of 3 for steady flows. Traditionally, the method of dimensional analysis results in a small number of dimensionless groups. In the case of steady forced convection these can reduce to three, namely the Nusselt (Nu), Reynolds (Re) and Prandtl (Pr) numbers, for heat transfer, fluid flow regime and fluid properties respectively. Again, traditionally, data are presented on log-log graphs, say of Nu versus Re, with Pr being a possible third parameter. For natural convection, the Grashof number (Gr) expresses buoyancy effects in place of Re, while for combined (natural and forced) convection Gr becomes additional to, rather than replacing, Re. Using sets of data for: (a) vertical combined convection in nuclear safety, (b) horizontal combined convection review material, and (c) microchannel heat transfer, in the first part of this paper we survey this problem. We reach the following conclusions: that heat transfer data are presented in either 'holistic' or 'reductive' modes, and that other thermodynamic performance data are related to the generic scientific cases of (a) 3-dimensional space and (b) multi-dimensional space. In the second part of the paper we present a first attempt at applying design-type procedures to specifying this problem. Visualisation priorities are suggested from which particular solutions will be developed in future

    Complex crater formation by oblique impacts on the Earth and Moon

    Get PDF
    Almost all meteorite impacts occur at oblique incidence angles, but the effect of impact angle on crater size is not well understood, especially for large craters. To improve oblique impact crater scaling, we present a suite of simulations of complex crater formation on Earth and the Moon over a range of impact angles, velocities and impactor sizes. We show that crater diameter is larger than predicted by existing scaling relationships for oblique impacts; there is little dependence on obliquity for impacts steeper than 45° from the horizontal. Crater depth, volume and diameter depend on impact angle in different ways—relatively shallower craters are formed by more oblique impacts. Our simulation results have implications for how crater populations are determined from impactor populations and vice-versa. They suggest that existing approaches to account for impact obliquity may underestimate the number of complex craters larger than a given size by as much as one-third

    Spud 1.0: generalising and automating the user interfaces of scientific computer models

    No full text
    The interfaces by which users specify the scenarios to be simulated by scientific computer models are frequently primitive, under-documented and ad-hoc text files which make using the model in question difficult and error-prone and significantly increase the development cost of the model. In this paper, we present a model-independent system, Spud, which formalises the specification of model input formats in terms of formal grammars. This is combined with an automated graphical user interface which guides users to create valid model inputs based on the grammar provided, and a generic options reading module, libspud, which minimises the development cost of adding model options. &lt;br&gt;&lt;br&gt; Together, this provides a user friendly, well documented, self validating user interface which is applicable to a wide range of scientific models and which minimises the developer input required to maintain and extend the model interface

    Widespread impact-generated porosity in early planetary crusts.

    Get PDF
    NASA's Gravity Recovery and Interior Laboratory (GRAIL) spacecraft revealed the crust of the Moon is highly porous, with ~4% porosity at 20 km deep. The deep lying porosity discovered by GRAIL has been difficult to explain, with most current models only able to explain high porosity near the lunar surface (first few kilometers) or inside complex craters. Using hydrocode routines we simulated fracturing and generation of porosity by large impacts in lunar, martian, and Earth crust. Our simulations indicate impacts that produce 100-1000 km scale basins alone are capable of producing all observed porosity within the lunar crust. Simulations under the higher surface gravity of Mars and Earth suggest basin forming impacts can be a primary source of porosity and fracturing of ancient planetary crusts. Thus, we show that impacts could have supported widespread crustal fluid circulation, with important implications for subsurface habitable environments on early Earth and Mars

    Combining shock barometry with numerical modeling: insights into complex crater formation – The example of the Siljan impact structure (Sweden)

    Get PDF
    Siljan, central Sweden, is the largest known impact structure in Europe. It was formed at about 380 Ma, in the late Devonian period. The structure has been heavily eroded to a level originally located underneath the crater floor, and to date, important questions about the original size and morphology of Siljan remain unanswered. Here we present the results of a shock barometry study of quartz-bearing surface and drill core samples combined with numerical modeling using iSALE. The investigated 13 bedrock granitoid samples show that the recorded shock pressure decreases with increasing depth from 15 to 20 GPa near the (present) surface, to 10–15 GPa at 600 m depth. A best-fit model that is consistent with observational constraints relating to the present size of the structure, the location of the downfaulted sediments, and the observed surface and vertical shock barometry profiles is presented. The best-fit model results in a final crater (rim-to-rim) diameter of ~65 km. According to our simulations, the original Siljan impact structure would have been a peak-ring crater. Siljan was formed in a mixed target of Paleozoic sedimentary rocks overlaying crystalline basement. Our modeling suggests that, at the time of impact, the sedimentary sequence was approximately 3 km thick. Since then, there has been around 4 km of erosion of the structure

    Minimum sample size for external validation of a clinical prediction model with a continuous outcome.

    Get PDF
    Clinical prediction models provide individualized outcome predictions to inform patient counseling and clinical decision making. External validation is the process of examining a prediction model's performance in data independent to that used for model development. Current external validation studies often suffer from small sample sizes, and subsequently imprecise estimates of a model's predictive performance. To address this, we propose how to determine the minimum sample size needed for external validation of a clinical prediction model with a continuous outcome. Four criteria are proposed, that target precise estimates of (i) R2 (the proportion of variance explained), (ii) calibration-in-the-large (agreement between predicted and observed outcome values on average), (iii) calibration slope (agreement between predicted and observed values across the range of predicted values), and (iv) the variance of observed outcome values. Closed-form sample size solutions are derived for each criterion, which require the user to specify anticipated values of the model's performance (in particular R2 ) and the outcome variance in the external validation dataset. A sensible starting point is to base values on those for the model development study, as obtained from the publication or study authors. The largest sample size required to meet all four criteria is the recommended minimum sample size needed in the external validation dataset. The calculations can also be applied to estimate expected precision when an existing dataset with a fixed sample size is available, to help gauge if it is adequate. We illustrate the proposed methods on a case-study predicting fat-free mass in children
    • 

    corecore